印度半导体产业发展态势与前景

□ 楼春豪

[提 要] 印度是美国渲染价值观对立、炒作供应链安全,以构筑所谓"民主技术联盟"的重要拉拢对象。出于自身产业转型、渔利中美战略竞争、强化供应链韧性的需要,印度多措并举,积极发展本国半导体产业,在完善半导体产业生态系统方面取得一定进展。但受制于自身支撑性条件不足、对中国供应链依赖较深、美国帮扶程度存在变数等因素,印度半导体产业发展任重道远。美印在半导体产业链领域的合作,或使中国面临产业链上下游"双向承压"的挑战。

〔关键词〕韧性供应链、自立印度、半导体产业

[作者简介] 楼春豪, 中国现代国际关系研究院副院长、研究员

〔中图分类号〕F435.166

〔文献标识码〕A

〔文章编号〕0452 8832 (2024) 4 期 0099-21

科技竞争是大国竞争的核心。美国将中国定性为"战略竞争者"后,在 半导体领域不断加大对中国的围堵打压,威逼利诱日本、韩国、荷兰等国禁 止向中国出售设备、转让技术,试图构筑所谓的"民主技术联盟",并图谋 将印度纳入其主导的半导体供应链。在此背景下,印度希望抓住全球半导体 供应链重塑的机会,对接本国的"印度制造""自立印度"(Atmanirbhar Bharat)等构想,以期实现"全球新兴技术领导者""下一个半导体制造中 心""自力更生的印度"等角色诉求。^[1]关于全球半导体供应链的现有讨论和研究,主要围绕美国、日本、韩国以及中国台湾等已具有一定优势的国家和地区,对目前仍处于起步阶段的印度关注不多。不过,作为全球地缘政治博弈和地缘经济重塑的重要棋手,印度半导体产业的发展势头与前景,不仅关系到其能否顺利推进经济转型,还关系到印度在深度融入美国主导产业链的情况下能在多大程度上保持战略自主,关系到"全球南方"国家会否卷入美国构筑的所谓"民主技术联盟",关系到印度能否如愿以偿地提升其在全球产业链供应链中的地位,以及在多大程度上对中国实现产业竞争、替代抑或脱钩。在美国升级对华战略竞争、全球半导体供应链经历重塑的背景下,有必要对印度半导体产业发展态势和前景进行研究。

一、印度积极发展半导体产业

印度并非近年来才开始重视发展半导体产业。早在20世纪60年代,印度国防部下属的巴拉特电子有限公司(Bharat Electronics Limited)就开始生产半导体,作为集成电路先驱的美国仙童半导体公司(Fairchild Semiconductor)也曾考虑将印度作为其首个亚洲子公司的潜在选址。20世纪80年代,印度抓住信息革命契机,加快发展信息通信和半导体产业,并于1983年成立半导体综合有限公司(Semiconductor Complex Limited)。有学者甚至认为,"20世纪80年代末,印度(半导体制造技术)与国际上最先进的技术仅落后两年。"^[2]不过,半导体综合有限公司在1989年遭遇重特大火灾,给印度半导体产业发展造成毁灭性打击。20世纪90年代初经济改革之后,印度开始从国际上进口在技术和价格上都更有竞争力的半导体,国内半

^[1] 邢瑞利:《地位寻求、角色塑造与印度应对中美科技竞争的逻辑》,《外交评论》 2024 年第 1 期,第 53-89 页。

^[2] Trisha Ray, "Lessons from India's Past for Its Semiconductor Future," June 22, 2023, https://www.orfonline.org/expert-speak/lessons-from-indias-past-for-its-semiconductor-future.

导体产业发展受到抑制。2007年,印度出台首个半导体政策,但由于政府激励措施不足、产业配套生态系统不健全,加之全球半导体产业已初步形成美国、东亚和欧洲为主的生产网络,印度很难在全球半导体产业链中谋得一席之地。随着美国对华科技战的不断升级,印度日益从国家安全角度审视对华经贸关系。在2019年开启第二个任期后,莫迪政府将目光投向半导体产业,寻求产业政策、招商引资、人才培养、配套基建、对外合作等多管齐下,着力完善半导体产业生态系统,试图将印度打造成"重要的半导体制造中心"。[1]

(一) 出台系列产业扶持政策

2021年,印度电子和信息技术部设立"印度半导体任务"(India Semiconductor Mission),作为政府部门、行业和学术界的联系纽带,以制定和推动印度半导体设计生产以及显示器制造的长期战略,并吸引外资及本土大型企业投资半导体。2022年9月21日,印度政府正式批准预算达7600亿卢比(合逾100亿美元)的修订版"半导体和显示器制造生态系统计划"(Modified Programme for Semiconductors and Display Fab Ecosystem)。该项目包括半导体和显示器生产计划、复合半导体/硅光子/传感器工厂和半导体组装测试标记封装(ATMP)/外包组装测试(OSAT)建厂计划、半导体设计关联激励计划(Design Linked Incentive)、半导体实验室更新计划等若干子项目。前两个生产计划将为合格申请者提供资本支出50%的财政支持;"设计关联激励计划"将在五年内把产品设计相关激励扩大至符合条件支出的50%,把"产品部署关联激励"(Deployment Linked Incentive)扩大至净销售额的4%~6%,根据"半导体实验室更新计划",印度政府将对位于莫哈里的半导体实验室进行现代化和商业化改造。在该项目下,印度政府提出了至少新建两座半导体工厂和两座显示器工厂,以及建立

^[1] Aashish Aryan, "Day Not Far when India Becomes Global Semiconductor Hub: PM Modi," Economic Times, March 13, 2024, https://m.economictimes.com/tech/technology/day-not-far-when-india-becomes-global-semiconductor-hub-pm-modi/articleshow/108472032.cms.

至少20家复合半导体和半导体封装厂的具体量化目标。[1]

印度政府还推出半导体相关行业的"生产关联激励计划" (Production Linked Incentive)。为促进本国制造业发展、提高供应链韧性,印度政府 2020年开始推出一系列生产关联激励计划,迄今已涵盖关键原料药/中间体、 大型电子制造、医疗器械制造、白色家电、特种钢、汽车及其零部件、无人 机及其零部件等14个行业。与半导体产业相关的激励计划,包括电子和信息 技术部负责的大规模电子制造激励计划、电子技术和电子产品激励计划,以 及通信部负责的通信和网络产品激励计划。[2]此后,印度政府于2020年4月出 台"促进电子元件和半导体制造项目"(SPECS)和"电子制造集群计划2.0" (EMC2.0)。SPECS为特定电子产品(包括电子元件、半导体和显示器、ATMP 单元等)的生产商提供资本支出的25%作为财政激励,EMC2.0则是针对产业发 展配套基础设施的激励计划。根据2024年6月《商业标准报》报道,印度政 府正酝酿推出一项针对电子元件的新的生产关联激励计划,以取代2024年3月 31日到期的SPECS,而此前印度手机和电子协会(ICEA)则呼吁政府针对电 子元件行业出台总额3000亿~3500亿印度卢比(约合35.7亿~41.7亿美元)的 生产关联激励计划。^[3]此外,印度政府于2021年3月出台主要针对特定电子元 件的"IT硬件生产关联激励计划",对符合条件的公司在印度生产且属于目 标细分市场(笔记本电脑、平板电脑、一体机和服务器)的商品销售额提供 2%~4%的激励,推动零部件和子组件的本地化。[4]2023年5月,印度政府批准

^{[1] &}quot;Modified Programme for Semiconductors and Display Fab Ecosystem," Ministry of Electronics & Information Technology of India, https://www.meity.gov.in/esdm/Semiconductors-and-Display-Fab-Ecosystem.

^{[2] &}quot;Production Linked Incentive (PLI) Schemes in India," Invest India, https://www.investindia.gov.in/production-linked-incentives-schemes-india.

^[3] Ashutosh Mishra and Nivedita Mookerji, "Value-Add Target in New PLI Scheme for Electronics Manufacturing May Double," Business Standard, June 11, 2024, https://www.business-standard.com/economy/news/value-add-target-in-new-pli-scheme-for-electronics-manufacturing-may-double-124061101216_1.html.

^{[4] &}quot;Schemes for Electronics Manufacturing," Invest India, https://www.investindia.gov.in/schemes-for-electronics-manufacturing.

"IT硬件生产关联激励计划2.0",除原有目标细分市场外,将半导体设计、芯片制造和封装也纳入其中。^[1]

(二) 完善半导体产业生态系统

20世纪80年代开始,日本、韩国和中国台湾等在半导体领域群体性崛起,一定程度上打破了美国在半导体领域的垄断地位,使全球半导体供应链成为基于自身技术禀赋而进行全球分工协作和高度集成的专业化网络,形成少数几个国家和地区拥有优势、存在较强技术壁垒的供应链网络。^[2]印度计划在半导体设计、设备、制造、材料各个环节都加大投入,培育和健全半导体生态系统,以期在全球半导体供应链网络中占据一席之地。

软件层面,印度努力挖掘自身充沛的人力资源,高度重视人才的培养和使用。印度拥有占全球比例近20%的芯片设计人才,且几乎所有全球25强半导体设计公司都在印度设有研发中心,但印度并不掌握核心关键的知识产权,创新型人才依然不足。为了弥补半导体领域巨大的人才缺口,印度政府在人才培养、使用和激励方面推出了一系列措施。2022年,印度政府启动"创业芯片计划"(C2S),将在5年时间内资助超过100家机构(包括学术机构、研发机构、初创企业、中小微型企业)培训8.5万名工程技术领域专业人员,并支持其建立初创企业。[3]印度还积极参与美日印澳"四边机制"框架下的"STEM奖学金计划",该计划每年资助100名优秀学生(每个国家25人)前往美国攻读科学、技术、工程和数学的研究生课程,已于2023年正式启动。

除政府层面外,印度企业和高校在人才培养方面也发挥重要作用。例

^{[1] &}quot;Production Linked Incentive Scheme - PLI 2.0 for IT Hardware," Ministry of Electronics & Information Technology of India, https://www.meity.gov.in/esdm/production-linked-incentive-scheme-pli-20-it-hardware.

^[2] Saif Khan, Dahlia Peterson and Alexander Mann, "The Semiconductor Supply Chain: Assessing National Competitiveness," Center for Security and Emerging Technology, January 2021, https://cset.georgetown.edu/wp-content/uploads/The-Semiconductor-Supply-Chain-Issue-Brief-1.pdf.

^{[3] &}quot;India Is Becoming an Excellent Conductor for Semiconductor Investments: PM Modi," July 28, 2023, https://www.narendramodi.in/text-of-prime-minister-narendra-modi-s-address-at-semicon-india-conference-2023-gandhinagar-gujarat-572463.

如,印度政府在超过100所大学配备了新思科技、铿腾电子和西门子的电子设计自动化(EDA)工具,便于学生在毕业后尽快投身半导体行业; ^[1]全球芯片巨头AMD宣布与孟买印度理工学院合作,向后者孵化的致力于开发节能脉冲神经网络芯片的初创企业提供资助。数据显示,印度初创企业2016年仅有约300家,而截至2024年3月中旬,工业和内贸促进局(DPIIT)认可的初创企业已超过12.5万,其中人工智能、物联网、机器人、纳米科技等行业的企业逾1.3万家。^[2]

硬件层面,印度政府加强对半导体产业配套基础设施和所需资源能源的投入,完善半导体产业发展的硬件基础。印度政府在公路、铁路、港口、电力等领域出台系列发展政策,取得了一定成绩。以电力为例,印度政府在《国家基础设施规划(2019—2025)》中将能源领域作为资本支出占比最高的行业(约24%),特别是对可再生能源投入巨大,着力保障印度电力供应的稳定。印度中央电力署2017年3月宣布印度首次成为电力净出口国,公用事业电力容量从2014年3月底的245.3吉瓦增加到2024年3月底的442吉瓦。[3]交通设施方面,"电子制造集群计划2.0"的主要任务就是通过支持创建世界一流的基础设施、公共设施和便利设施,增强供应链响应能力、缩短产品上市时间、降低物流成本,吸引国际资本在印度建立供应链。此外,半导体生产涉及超过150种化学品、30多种气体和30多种矿产。[4]"印度半导体任务"的重点之一就是"发展可信赖的半导体供应链,包括原材料、特种化学品、气体和制造设备"。2022年初,印度政府发布了30种关键和战略矿产清单,包含

^{[1] &}quot;How India Is Spreading Itself Across the Chip-Making Value Chain," Economic Times, March 14, 2024, https://economictimes.indiatimes.com/industry/cons-products/electronics/how-india-is-spreading-itself-across-the-chip-making-value-chain/articleshow/108492622.cms.

^[2] Ministry of Finance of India, "Economic Survey 2023-2024," p.373.

^{[3] &}quot;Executive Summary of Power Sector, March 2024," Central Electricity Authority of India, https://cea.nic.in/executive-summary-report/?lang=en.

^[4] India Electronic and Semiconductors Association (IESA), Semiconductor Manufacturing Value Chain: India's Opportunity in the Global Market, April 2022, p.11.

铍、镓、铟、铪、硅、锆等对半导体产业发展至关重要的矿产,并通过组建 国营的卡尼吉比迪什印度有限公司(Khanij Bidesh India Ltd)、参加"矿 产安全伙伴关系"(Minerals Security Partnership)等,提高关键矿产供 应链的稳定性。

(三)积极开展"半导体供应链外交"

2020年1月,印度外交部成立新技术和新兴战略技术司,其主要职能是开展与新兴技术相关的外交事务。印度非常重视加强美日印澳"四边机制"框架下的合作。2021年3月,四国成立"关键和新兴技术工作小组",主要任务就是在技术设计、标准制定、开发使用等方面加强政策协调,促进政府与私营部门之间的合作,加强关键技术供应链的合作。[1]同年9月,"四边机制"举行首次线下峰会,宣布启动"半导体供应链倡议",通过能力评估和漏洞识别,提升半导体及其重要零部件的供应链安全水平。[2]与印度人民党关系密切的塔克西拉研究院学者普拉奈•克塔斯塔内(Pranay Kotasthane)认为,美日印澳应发挥各自在半导体供应链领域的相对优势,打造多元化的半导体制造基地联盟,并纳入越南、韩国、以色列、新加坡、欧盟以及中国台湾等。[3]此外,美日印澳还组建"四边投资者网络",推动产业界在半导体领域合作。

美国是印度推进"半导体供应链外交"的首要对象。"印度半导体任务"的顾问委员会委员,除印度本国人外,基本都来自美国。2023年1月,美国和印度正式启动"关键和新兴技术倡议"(iCET),涉及人工智能、半导体、太空、下一代通信、量子科技等诸多领域,被认为是继美印民用核能合

^{[1] &}quot;Fact Sheet: Quad Summit," The White House, March 12, 2021, https://www.whitehouse.gov/briefing-room/statements-releases/2021/03/12/fact-sheet-quad-summit/.

^{[2] &}quot;Fact Sheet: Quad Leaders' Summit," The White House, September 24, 2021, https://www.whitehouse.gov/briefing-room/statements-releases/2021/09/24/fact-sheet-quad-leaders-summit/.

^[3] Pranay Kotasthane, "Siliconpolitik: The Case for a Quad Semiconductor Partnership," ISAS Working Paper, National University of Singapore, April 26, 2021, pp. 9-12, https://www.isas.nus.edu.sg/papers/siliconpolitik-the-case-for-a-quad-semiconductor-partnership/.

作协议后的又一里程碑事件。2023年3月,美国商务部长雷蒙多出访印度,承诺在人工智能、半导体、清洁能源和关键矿产、移动网络、量子信息科技等领域设立工作组,并推动建立"半导体供应链和创新伙伴关系"。^[1]

2023年6月,印度总理莫迪对美国进行国事访问,双方将"擘画面向未来的技术伙伴关系"列为合作成果首项,其内容包括签署《半导体供应链和创新伙伴关系谅解备忘录》、成立先进通信技术工作组、美国半导体企业(如美光科技)加大对印度投资等。2024年6月,美印举行"关键和新兴技术倡议"第二次会议,专门提及"确保半导体供应链安全",发起美国通用原子(General Atomics)和印度第三科技公司(3rdiTech)之间的半导体战略伙伴关系,共同设计和制造用于精确制导弹药和其他国家安全电子平台的半导体产品,承诺加强两国半导体行业合作,构建印度半导体生态系统。[2]

除美国外,印度还加强与欧盟、日本、英国、韩国以及中国台湾等国家和地区的半导体产业合作。2022年4月,印度和欧盟委员会宣布成立"印欧贸易和技术理事会",这是印度与其他国家或国际组织成立的首个贸易和技术理事会。该理事会下设三个工作组,即绿色和清洁能源技术工作组,韧性价值链、贸易和投资工作组,以及负责半导体领域合作的战略技术、数字治理和数字联通工作组。^[3]2023年11月,印度与欧盟签署《关于半导体生态系统、供应链和创新的工作安排备忘录》,加强在半导体研发、技能工人培训、生态系统构建等领域合作。2024年1月,印度政府正式批准该备忘录,

^{[1] &}quot;Two Years of Indo-Pacific Strategic Results: Strengthening Indo-Pacific Commerce for a Prosperous Future," U.S. Department of Commerce, February 9, 2024, https://www.commerce.gov/news/fact-sheets/2024/02/two-years-indo-pacific-strategic-results-strengthening-indo-pacific.

^{[2] &}quot;Joint Fact Sheet: The United States and India Continue to Chart an Ambitious Course for the Initiative on Critical and Emerging Technology," The White House, June 17, 2024, https://www.whitehouse.gov/briefing-room/statements-releases/2024/06/17/joint-fact-sheet-the-united-states-and-india-continue-to-chart-an-ambitious-course-for-the-initiative-on-critical-and-emerging-technology/.

^{[3] &}quot;EU-India Trade and Technology Council," European Parliament, https://www.europarl.europa.eu/RegData/etudes/ATAG/2024/757587/EPRS_ATA(2024)757587_EN.pdf.

"印度半导体任务"首席执行官作为印方牵头人。^[1]2023年7月,印度电子和信息技术部与日本经济产业省签署《印日半导体供应链合作伙伴关系合作备忘录》,加强两国在半导体领域的合作。另据印度媒体报道,印度正与美国、韩国开展半导体领域三边合作,韩国计划向印度投资1200亿美元以发展半导体产业。^[2]2024年7月25日,印度和英国正式启动由双方国家安全顾问牵头的"技术安全倡议",将半导体作为七个重点合作领域之一。^[3]印度与中国台湾地区的半导体产业合作也值得关注。2024年5月,"印度台北协会"、印度电子和信息技术部、"印度半导体任务"、国际半导体产业协会在台北联合举办半导体高峰论坛,明确将半导体产业作为印台合作的重点领域。

二、印度发展半导体产业的政策逻辑

半导体产业对量子科技、人工智能、数字经济等技术和产业的发展具有基础性作用,是地缘政治博弈的重要领域,以至于有学者用"芯片战争"来形容博弈之激烈、影响之深远。^[4]在全球技术民族主义兴起、产业链供应链深刻重塑、美国对华科技打压升级、自身产业转型发展需要等多重因素叠加

^{[1] &}quot;Memorandum of Understanding on Semiconductors with India," European Commission, November 23, 2023, https://digital-strategy.ec.europa.eu/en/library/memorandum-understanding-semiconductors-india.

^{[2] &}quot;India, US, South Korea Explore Cooperation in Tech Sector," Economic Times, March 15, 2024, https://m.economictimes.com/small-biz/trade/exports/insights/india-us-south-korea-explore-cooperation-in-tech-sector/articleshow/108512018.cms; "S. Korea Aims \$1200 Bn Worth Chip Export as India Joins Global Semiconductor Map," Economic Times, March 21, 2024, https://telecom.economictimes.indiatimes.com/news/devices/s-korea-aims-120-bn-worth-chip-export-as-india-joins-global-semiconductor-map/108666629.

^[3] 这七个合作领域分别是通信、关键矿产、半导体、人工智能、量子科技、生物技术/医疗技术和先进材料。参见 "UK-India Technology Security Initiative Factsheet," UK Government, July 25, 2024, https://www.gov.uk/government/publications/uk-india-technology-security-initiative-factsheet/uk-india-technology-security-initiative-factsheet/semiconductors.

^[4] 克里斯·米勒:《芯片战争——世界最关键技术的争夺战》,蔡树军译,浙江人民出版社 2023 年版。

作用下,印度开始下大力气发展半导体产业。与历史上偏重经济逻辑不同, 此次印度发展半导体既有经济逻辑,更有安全和地缘政治逻辑。

(一) 经济逻辑: 印度经济转型升级催生巨大市场需求

产业转型角度看, 莫迪政府从发展制造业和布局新兴产业两方面入手, 积极推动产业转型,而半导体对产业转型至关重要。20世纪90年代初经济 改革后, 印度并没有走上与中国、日本、韩国等相似的优先发展制造业的道 路,而是采取了服务业驱动的发展模式。这既与印度当时基础设施滞后、熟 练劳动力匮乏等因素有关,也受国际上信息技术革命加速发展的外部环境影 响。目前,印度经济结构仍以服务业为主,服务业对国内生产总值的贡献 率超过50%,且是外国直接投资流入最多的行业。[1] 莫迪政府上台后,提出 "印度制造""数字印度"等规划,着力发展数字经济、电子产业、新能源 汽车等,半导体则是这些行业不可或缺的物理载体,是影响相关行业发展前 景的关键要素。莫迪政府将"印度半导体任务""印度人工智能任务"等放 在电子和信息技术部下设的、由辛格政府于2013年成立的"数字印度公司" (Digital India Corporation), [2] 足见印度政府将半导体与数字经济、人 工智能等行业相关联。电子产业、数字经济、新能源汽车等产业的发展,必 然催生对半导体供应的巨大需求。以电子产业为例,2022年印度的电子产业 产值约1010亿美元,到2026年有望增长至3000亿美元,其中手机产值预计从 2023年的440亿美元增加到2026年的1100亿美元,[3]这将极大推高对半导体的

^[1] 印度工业对国内生产总值的贡献约 30%,制造业贡献则在 15%~20% 之间徘徊。参见 India Brand Equity Foundation, "Services Sector in India," https://www.ibef.org/industry/services; Sanjaya Baru, "The Chequered History of Make in India and What Modi Must Do to Make It Work," February 4, 2016, https://thewire.in/economy/make-in-india-is-all-about-pie-policy-infrastructure-enterprise。

^[2] Digital India Corporation, Ministry of Electronics & Information Technology of India, https://dic.gov.in/.

^{[3] &}quot;Electronics Production to Reach \$300 Billion in India by 2026: ICEA," Outlook India, January 24, 2022, https://www.outlookindia.com/business/electronics-production-to-reach-300-billion-in-india-by-2026-icea-news-47008.

需求。

消费市场角度看,印度年轻人口规模庞大,对笔记本电脑、智能手机、穿戴设备、新能源汽车等产品需求巨大,这些都会转化为对半导体的需求。 惠誉旗下研究机构BMI Research的报告称,具有技术素养的城市中产阶级的可支配收入不断增加,在电子产品上的消费支出不断扩大,使印度有望在2027年成为全球第三大消费市场。^[1]印度电子和半导体协会(IESA)和咨询公司Counterpoint Research的联合研究报告也指出,印度半导体消费额预计在2026年达到640亿美元,是2019年220亿美元的三倍,年复合增长率16%;2030年更有望达到1100亿美元,占全球半导体消费总额的10%左右。^[2]

不过,与巨大需求形成鲜明对比的是,印度半导体产业发展滞后,本土半导体供给不足,半导体需求90%以上依赖进口。2018—2022年间,印度占全球半导体产值的比例仅在0.7%~0.8%左右。^[3]2022年,印度是全球最大的半导体进口国,进口额约45.5亿美元,在进口商品中排名第19位,^[4]这种供需失衡带来了巨大的贸易逆差问题。印度政府寻求发展国内半导体产业,既能有效解决半导体供需失衡带来的巨大贸易逆差问题,也能撬动半导体产业对其他行业的倍增器作用,为国内经济转型发展提供更好保障。

(二)安全逻辑: 印度谋求打造韧性半导体供应链

在地缘政治风险上升、贸易保护主义加剧的背景下,地缘政治和国家 安全逻辑逐渐超越经济效率逻辑,原先基于要素禀赋形成的经济相互依赖被

^[1] Charmaine Jacob, "India's Consumer Market Set to Become the World's Third Largest by 2027, Behind the U.S. and China," CNBC, September 6, 2023, https://www.cnbc.com/2023/09/07/indiaconsumer-market-to-be-the-worlds-third-largest-by-2027-report-.html.

^[2] Stephen Ezell, Assessing India's Readiness to Assume a Greater Role in Global Semiconductor Value Chains, Information Technology and Innovation Foundation, February 2024, p.7.

^[3] Taipei Representative Office in Singapore, "Taiwan and the Global Semiconductor Supply Chain: 2023 in Review," April/May 2024, p.54, https://www.roc-taiwan.org/uploads/sites/86/2024/04/2024_April___May_Issue.pdf.

^{[4] &}quot;Semiconductor Devices in India," The Observatory of Economic Complexity, https://oec. world/en/profile/bilateral-product/semiconductor-devices/reporter/ind.

视为"安全风险"而非"合作基石",在全球化热潮下形成的全球产业链供应链分工格局也面临重塑压力。特别是美国出于对华战略竞争的目的,打着"去风险""供应链韧性"的旗号搞"去中国化",冲击全球产业链供应链的稳定与安全。在美国战略拉拢、自身"产业兴国"抱负以及中印关系陷入低谷等多重因素影响下,印度对华经贸政策转向消极。2020年初突如其来的新冠疫情,暴露了印度对中国较为严重的供应链依赖,引起印度政府和战略界的反思;2020年中旬爆发的加勒万河谷冲突事件,促使印度加快推进所谓的"中国+"供应链战略。过去几年,印度政府通过加强美日印澳"四边机制"下的韧性供应链合作、出台对华歧视性经贸政策、扶持本国制造业发展等,多管齐下降低产业链供应链对华依赖。

此外,国际地缘政治形势严峻复杂,新冠疫情、乌克兰危机、巴以冲突等"黑天鹅""灰犀牛"事件层出不穷,对全球产业链供应链的安全稳定构成巨大挑战。有学者指出,"相较于以往关注地缘政治风险给全球价值链带来的风险,当下各个国家更多地关注由全球价值链带来的地缘政治风险,转而促成政治上对全球价值链的抵抗、限制或破坏,相关的风险正沿着全球价值链的节点向上游或下游溢出,全球价值链的竞争性更加凸显。"^[1]印度虽然希望从中美博弈中得利,特别是谋求美国对其在半导体等高科技领域的赋能,但也有很强的战略自主意识,不愿完全和美国绑定,且清楚与美国的合作无法自动带来供应链稳定,要应对动荡国际局势的冲击,必须增强自身抵御风险的能力,借力美国的最终目标是增强自身经济自立能力。^[2]

印度对半导体供应链安全的关切,是其从国家安全角度审视产业安全的自然折射。半导体产业与一国产业竞争力、战略自主性和国家安全密切相

^[1] 余南平、栾心蔚:《国际政治经济竞争范式的转变:从全球价值链到战略价值链》,《欧洲研究》2023年第4期,第89页。

^[2] Akshat Upadhyay, "China-US Tussle over Semiconductors: What Does It Imply for India and the World," Outlook India, November 1, 2022, https://www.outlookindia.com/international/what-us-china-tussle-over-semiconductors-means-for-india-and-the-world-news-233822.

关,已然成为具有强烈安全色彩的"战略价值链",^[1]其成为印度政府供应链安全的重点关切也是题中应有之义。印度积极发展半导体产业的重要目的,就是提高半导体产业链和供应链的韧性与稳定,一方面抑制对华供应链过度依赖的倾向,另一方面提高防范和抵御供应链风险挑战的自主能力。

(三) 地缘逻辑: 印度期望渔利地缘政治博弈

近几年,美国和印度关系发展进入快车道。虽然印度对外政策有很强的战略自主性,不太可能与美国结为严格意义上的盟友,但其在美国对华战略竞争中"选边站"的倾向比较明显,美国"扶印制华"的政策趋向也很明确。在美国对华战略竞争的大背景下,印度自认为能够推动当前的中美印关系朝着类似冷战时期中美苏关系的方向发展,并在中美之间渔翁得利。特别是2020年加勒万河谷冲突事件以来,印度战略界对华负面认知加剧,基本上形成了将中国视为主要竞争对手的共识。以国家间关系最为敏感的军事安全领域为例,美国和印度已经签署防务合作基本协议,明确国防工业合作路线图、发起"美印国防加速生态系统"(INDUS-X)、推动构建"面向未来的技术伙伴关系",使两国关系虽无盟友之名但不乏盟友之实。

美国将半导体产业作为对华战略竞争的重要抓手,不断加码对中国半导体产业的遏制打压,"在半导体产业链的所有关键环节都设计了阻碍中国技术进步的方案,不但限制高算力芯片成品对华出口,而且限制产业链上游的芯片制造设备、零部件、芯片设计软件出口以及产业链下游的算力租赁服务。"^[2]在此过程中,美国难以凭借一己之力实现对华遏制目标,故而加紧构建其主导的"技术联盟",除依靠传统盟友的力量外,还积极拉拢印度等关键国家。^[3]面对美国的战略诱拉,印度积极迎合乃至策应。在半导体代表

^[1] European Commission, "Strengthening Strategic Value Chains for a Future-Ready EU Industry," Report of the Strategic Forum for Important Projects of Common European Interest, April 11, 2019, https://ec.europa.eu/docsroom/documents/37824.

^[2] 杨超、李伟、贺俊:《美对华半导体管制的趋势、实施要点与中国因应》、《产业经济评论》2024年第2期,第187页。

^[3] 邢瑞利:《美印对华科技竞争的战略协作评析》,《现代国际关系》2023年第3期,第91页。

的高科技领域,印度认为可以利用美国打造"遏华科技圈""排华供应链"的机会,从美国获得更多先进技术、承接更多产业转移,甚至成为"美国值得信赖的科技合作伙伴"。从"关键和新兴技术倡议"到"面向未来的技术伙伴关系",半导体领域都是美印高科技合作的重中之重。

此外,印度在对华政策中"打台湾牌"的动向越发明显,其主要考虑有:一是配合美国对华认知战,通过渲染台海紧张局势,将中国抹黑成"改变现状者",为其在中印边境的对华挑衅行为寻找借口;二是图谋让台海局势牵扯中国更多资源和精力,缓解其在陆地边境所承受的压力;三是看重中国台湾地区在部分产业的优势,吸引更多台湾资本和技术进入印度。在此过程中,半导体产业已成为印台互动的重点领域。台湾地区在全球半导体供应链中地位特殊。2023年,台湾地区晶圆代工产值800亿美元,占全球77.9%,集成电路封装测试产值187亿美元,占全球52.6%,两者均排名第一;集成电路设计产值352亿美元,占全球21.3%,名列第二。[1]印度看重台湾地区在半导体产业链中的地位,一方面抓住台湾当局企图拓展所谓"国际空间"的机会,积极吸引台湾企业赴印投资,另一方面渲染台海局势升级影响全球半导体供应链稳定,为其"打台湾牌"寻找借口。印度前驻华大使顾凯杰(Vijay Gokhale)表示,中国大陆对台湾的"封锁将严重扰乱对印度的半导体出口,对关键经济部门产生重大影响"。[2]印度战略界则鼓吹"印度应为下一次台海危机做准备",而印度军方更是开始研究台海冲突时的政策选项。[3]

^[1] Taipei Representative Office in Singapore, "Taiwan and the Global Semiconductor Supply Chain: 2023 in Review," p.54.

^[2] Vijay Gokhale, "What Should India Do Before the Next Taiwan Strait Crisis?," Carnegie India, April 2023, p.9, https://carnegieendowment.org/files/Gokhale_India_Taiwan_Final_PDF_edited.pdf.

^[3] Harsh Pant, "India Must Prepare for a Conflict over Taiwan," Hindustan Times, August 3, 2023, https://www.hindustantimes.com/opinion/india-must-prepare-for-a-conflict-over-taiwan-101691072216919.html; Nachiket Deuskar, "What Should India Do if China Invades Taiwan?," September 19, 2023, https://scroll.in/article/1055777/what-should-india-do-if-china-invades-taiwan; "India's Military Studying Options for Any China War on Taiwan," Economic Times, September 8, 2023, https://economictimes.indiatimes.com/news/defence/indias-military-studying-options-for-any-china-war-on-taiwan/articleshow/103495687.cms.

三、印度半导体产业发展面临的挑战

印度发展半导体产业的决心很大,且过去几年也取得了一定进展。2023年6月,美光公司承诺分两期投资8.25亿美元在古吉拉特邦的萨南德(Sanand)建造一座封装和测试工厂,并计划于2024年底前生产出首批"印度制造"的存储芯片。2024年2月,印度政府批准塔塔电子私人有限公司与台湾力积电联合成立半导体制造厂,也批准了两家封装测试工厂,即印度CGPower与日本瑞萨电子公司、泰国Stars Microelectronics的合资企业,以及塔塔半导体组装与测试私人有限公司。据2024年5月印度《经济时报》报道,塔塔集团已经开始向日本、美国和欧洲出口少量半导体芯片样本。[1]不过,半导体是全球技术复杂度最高、专业化分工最为深化的行业之一,有很高的技术壁垒,现有的半导体产供链网络也有很强的路径依赖,印度能否以及在多大程度上实现其半导体产业目标,仍有很大不确定性。

(一) 国内支撑条件不足拖累半导体生态系统构建

半导体既是技术密集型也是资本密集型产业,对资本投入、技术研发、 材料供给以及营商环境等方面都有很高要求。印度政府在生态系统培育方面 已做了很多努力,但在不少方面仍有明显短板。

在原材料、资金等"硬件"方面,印度方面的投入与产业发展的需要还有不小差距。半导体产业对水资源需求量很大,特别是需要大量超纯水。标准普尔的报告显示,全球半导体厂商对水的消耗几乎与香港整座城市的用水需求量相当,而且大约80%都由最大的28家厂商所消耗。^[2]但印度是全球水资

^[1] Dia Rekhi and Aashish Aryan, "Tata Electronics Begins Export of Semiconductor Chip Samples from Bengaluru Centre," Economic Times, May 7, 2024, https://m.economictimes.com/tech/technology/tata-begins-export-of-chip-samples/articleshow/109899909.cms.

^[2] S&P Global, "Sustainability Insights: TSMC and Water: A Case Study of How Climate Is Becoming a Credit-Risk Factor," February 26, 2024, https://www.spglobal.com/ratings/en/research/articles/240226-sustainability-insights-tsmc-and-water-a-case-study-of-how-climate-is-becoming-a-credit-risk-factor-12992283.

源压力最大的国家之一,其水资源仅占全球4%,甚至被认为面临"严重的水危机",^[1]且其现有的水提纯技术难以满足半导体对超纯水的要求。此外,半导体生产需要特种化学品和特种气,而印度目前生产相关产品的能力仍不足,难以达到半导体产业所需要的纯度,这被普遍认为是印度发展半导体的一大障碍。^[2]有学者指出,"芯片制造对水、电、物料供给容错率极低,生产中的任何断供问题都可能造成上百万美元的损失,这对基础设施水平薄弱的印度是重大挑战。"^[3]更重要的是,半导体产业的发展需要投入大量资金,印度政府能否稳定保持较大投入仍有待观察。

在营商环境、技术研发等"软件"方面,印度方面的政策供给也与国际投资者的需求间存在较大落差。尽管印度政府采取了诸多改善措施,使印度在国际上的营商环境排名有所提升,但国际资本对印度在补贴、税收、劳动和土地政策等方面仍有不少顾虑。2021—2022财年以来,印度的外国直接投资流入已连续三年减少,2023—2024财年降至444.23亿美元,是5年来的最低水平。^[4]以补贴政策为例,印度政府的扶持政策旨在为经政府批准的申请提供前期补贴,但外资公司更期望获得投资税收抵免(investment tax credit)而非补贴,因为企业需要根据政府确定的方向进行投资才能获得补贴,且申请这些补贴往往需要较长时间,而投资税收抵免则赋予企业更大自主权且申请便捷。^[5]富士康于2023年7月宣布放弃与印度韦丹塔集团

^{[1] &}quot;How Is India Addressing Its Water Needs?," World Bank Group, February 14, 2023, https://www.worldbank.org/en/country/india/brief/world-water-day-2022-how-india-is-addressing-its-water-needs.

^[2] Stephen Ezell, Assessing India's Readiness to Assume a Greater Role in Global Semiconductor Value Chains, p.31.

^[3] 毛克疾:《芯片产业:印度大国梦的"入场券"》,《世界知识》2022 年第 23 期,第 28 页。

^{[4] &}quot;Fact Sheet on Foreign Direct Investment (FDI) Inflow from April 2000 to March 2024," Department for Promotion of Industry and Internal Trade, https://dpiit.gov.in/sites/default/files/FDI_Factsheet_30May2024.pdf.

^[5] Konark Bhandari, "Taiwan-India Chips Cooperation and the Logic of Choosing India," August 8, 2024, https://carnegieendowment.org/research/2024/08/taiwan-india-chips-cooperation-and-the-logic-of-choosing-india.

(Vedanta)合作建设半导体生产企业的原因之一,就是未能获得预期中的政府补贴以及建设成本超出预期;而被印度政府寄予厚望的力积电与塔塔公司的合作,力积电方面也希望局限于技术合作而不涉及股权。^[1]此外,半导体制造和芯片设计业务通常在集群中发挥最佳作用,但印度的制造水平和设计能力难以与之形成合力。印度虽然拥有全球20%的芯片设计师,但知识产权却主要由外国公司持有,在印度的跨国公司研发中心产生的专利约占印度专利注册机构授予专利总数的55%~60%。^[2]

(二)美国对印度半导体产业发展帮扶有限

近年来,印度与美国双边以及在"四边机制"框架下的半导体供应链合作取得了长足进展,但这无法掩盖两国在涉及总体关系的诸多问题上的立场分歧。美印在国际秩序、意识形态、地区热点等问题上看法并不一致,美国对能否倚靠印度抗衡中国存在顾虑,而印度也不愿放弃战略自主沦为美国跟班。2024年6月,美国发布《2023年宗教自由报告》,公开批评印度国内人权状况恶化,称印度为"需要特别关注的国家",引起印度强烈不满,而印度总理莫迪7月初访问俄罗斯并与普京热情拥抱也引起了美国的关切。[3]美印关系的这种不和谐,势必会影响双边合作的深度与广度。以美印高度重视且发展较快的防务合作为例,目前仍存在程序对接、技术转让、合作模式等问题需要解决。有印度舆论担心,美印"关键和新兴技术倡议"看起来像是升级版的"国防技术和贸易倡议"(DTTI),但实际上只是"新瓶装旧酒",印

^{[1] &}quot;India Assures Taiwan of Policy Stability in Semiconductor Sector," Indian Express, August 4, 2024, https://indianexpress.com/article/business/india-assures-taiwan-of-policy-stability-in-semiconductor-sector-9493429/.

^[2] Konark Bhandari, "Is India 'Ready' for Semiconductor Manufacturing?," May 23, 2023, https://carnegieendowment.org/research/2023/05/is-india-ready-for-semiconductor-manufacturing.

^{[3] &}quot;India Says It Rejects 'Deeply Biased' US Religious Freedom Report," Reuters, June 28, 2024, https://www.reuters.com/world/india/india-says-it-rejects-deeply-biased-us-religious-freedom-report-2024-06-28/; Simon Lewis and Kanishka Singh, "US Says It Has Raised Concerns with India about Its Ties with Russia," Reuters, July 9, 2024, https://www.reuters.com/world/us-says-it-has-raised-concerns-with-india-about-its-ties-with-russia-2024-07-08/.

度所能期待的最好结果或许只能是组装美军用装备,并搭配印本土制造的外围部件,"象征性地展示印美联合"。^[1]

具体到半导体领域,印度的动机是从美国获得先进技术和资本以加速自身发展,与中国竞争在全球供应链中的地位,而美国的动机则是拉拢印度包围中国、疏远俄罗斯,双方合作的出发点并不一致。美印在政府层面达成的合作共识,能在多大程度上转化成产业层面的合作也存在一定变数,因为美国政府与企业的利益诉求并不相同,政府看重的是战略层面的协作,而企业更关注印度营商环境和投资印度的收益。目前,美印在半导体领域的合作仍主要停留在政府共识和产业界学术界的研讨,实质性投入不及预期。

此外,从美国发展半导体产业的历程看,美国并不乐见包括其盟友在内的任何国家挑战其产业霸权。美国将在半导体产业的主导地位作为其霸权体系的重要支撑,通过在产业链关键环节对核心技术和高端研发的控制、在融资渠道和股权结构方面对主要半导体企业的控制,以及作为世界最重要半导体产品买家而形成的市场控制,始终维持着其在半导体领域的产业霸权。^[2]20世纪70—80年代,日本半导体企业强势崛起,严重侵蚀美国在全球半导体市场的份额,就引起了美国对日本半导体企业的打压。^[3]因此,美方并不支持印度进军高端半导体的诉求。正如有印度学者指出:"美国愿意分享多少技术仍有待时间验证,但美国担心快速发展的印度最终也会像中国一样成为另一个威胁。"^[4]

(三)印度对华供应链"脱钩"难以实现

印度积极发展半导体产业,有降低对华供应链"依赖"的考量,但印度

^{[1] &}quot;US-India iCET: Old Wine in a New Bottle?," The Wire, February 10, 2023, https://thewire.in/diplomacy/us-india-icet-old-wine-new-bottle.

^[2] 李巍、李玙译:《解析美国的半导体产业霸权:产业权力的政治经济学分析》,《外交评论》2022年第1期,第22-58页。

^[3] 克里斯·米勒:《芯片战争——世界最关键技术的争夺战》,第 81-112 页。

^{[4] &}quot;India Joins America's AI Battle," February 6, 2023, https://www.tribuneindia.com/news/comment/india-joins-americas-ai-battle-476967/.

这一政策导向存在逻辑悖论。

其一,印度降低从中国进口半导体的难度较大。中国是印度最主要的半导体进口来源。2020—2022年与2007—2010年相比,印度从中国进口的二极管、晶体管和类似半导体设备从1.133亿美元飙涨至23.348亿美元,占印度全球进口总额的比重高达67.5%。^[1]2020/2021—2022/2023财年,印度半导体芯片进口额从6749.7亿卢比增加到12970.3亿卢比,增长92%,其中从中国进口额从2460.4亿卢比增加到3768.1亿卢比,增长53%。^[2]在本土半导体制造业尚未发展起来的情况下,印度存在从中国进口半导体的"路径依赖"。

其二,印度难以在脱离中国供应链的情况下发展本国产业。印度的对华歧视性经贸政策导致了中国对印投资的大幅下滑,但中印双边贸易额不降反升,印度对华贸易逆差也持续走高。根据中国海关总署数据,2022年中印贸易额为1359.8亿美元,其中印度对华贸易逆差首次突破千亿美元达1010.2亿美元;2023年中印贸易额为1362.2亿美元,印度对华贸易逆差有所回落但仍高达991.4亿美元。究其原因,印度越想发展本国制造业,从中国进口中间品的需求就越大,摆脱中国的供应链就越难,其所谓的对华产业竞争乃至"脱钩"政策就越难以推进。

其三,印度要想吸引国际资本和链主企业向印度转移产业链,离不开业已深深嵌入国际产业链供应链的中国企业。印度对中国技术工人严苛的签证制度,其初衷可能是为了限制中国企业进入印度,挤压印度本土产业发展,但结果却是限制了跨国企业雇佣的中国技术工人赴印度进行设备调试、技能培训等,制约了国际链主企业将在华产业链供应链迁移至印度,最终也影响

^[1] Global Trade Research Initiative, *An Examination of India's Growing Industrial Sector Imports from China*, April 29, 2024, p.14.

^{[2] &}quot;Chip Imports from China Up 53% in Last 3 Financial Years: MoS IT Rajeev Chandrasekhar," Economic Times, July 31, 2023, https://m.economictimes.com/tech/technology/chip-imports-from-china-up-53-in-last-3-financial-years-mos-it-rajeev-chandrasekhar/articleshow/102283674.cms.

了印度自身的产业发展。^[1]目前,印度政府似乎已意识到这个问题。印度财政部2024年7月发布的《经济评估(2023—2024财年)》报告指出:"从中国吸引投资有助于促进印度出口,提升印度在全球供应链中的参与度。"^[2]

四、结语

半导体产业是支撑现代经济社会发展和保障国家安全的战略性、基础性和先导性产业,是诸多战略性前沿技术的"技术基石",不仅深度影响国家安全,更可能成为军事力量和地缘政治竞争力的重要支柱。^[3]印度发展半导体产业有其自身的经济转型逻辑,亦有强烈的地缘政治动机。对印度半导体产业发展的审视,不仅要从中印双边关系层面入手,更应从维护和确保中国在全球产业链供应链分工格局中优势地位的角度出发。

从中印双边关系层面看,中印经贸关系的性质和动能已发生改变,印度 更多从竞争而非合作的视角处理对华经贸关系,谋求取代中国在全球产业链 供应链中地位的图谋非常明显。虽然印度政府的对华产业竞争抑或"脱钩" 政策实际效果有限,印度与中国在全球产业链供应链中的地位仍有很大差 距,印度自身也面临越南、墨西哥乃至孟加拉国等的竞争,但这种政策调整 的方向是明确的。印度国家转型委员会(NITI Aayog)正就印度对华贸易依 赖的模式及其原因进行研究,以找到降低对中国供应链依赖的对策,^[4]而半 导体是印度政策调整绕不开的领域。

^[1] John Reed, "Thousands of Chinese Tech Workers Fail to Get Indian Visas, Industry Says," Financial Times, June 27, 2024, https://www.ft.com/content/eafd8547-b7d8-4dee-990c-e8ceaf8edcb3.

^[2] Ministry of Finance of India, "Economic Survey 2023-2024," July 2024, pp.143-145, https://www.indiabudget.gov.in/economicsurvey/doc/echapter.pdf.

^[3] 余南平、栾心蔚:《国际政治经济竞争范式的转变:从全球价值链到战略价值链》,第 96-97 页。

^[4] Yogima Seth Sharma, "NITI Aayog Invite Bids for Study on India-China Trade Deficit," Economic Times, January 24, 2024, https://economictimes.indiatimes.com/news/economy/foreign-trade/niti-aayog-invite-bids-for-study-on-india-china-trade-deficit/articleshow/107110805.cms.

从全球产业链供应链格局来看,美国一方面通过"小院高墙""民主技术联盟"等封堵打压中国技术进步,抑制中国高端产业发展,强化美国在供应链上游的技术优势;另一方面企图利用印度在生产要素成本上的比较优势,通过赋能印度并将之打造成低端制造中心,在供应链下游对华进行追逐,从而使中国面临供应链上下游的双向挤压。这种挤压既体现在产业发展层面,也体现在对全球市场的争夺。

中国始终坚持从战略高度看待中印关系,反复呼吁以建设性思考找到两个相邻大国正确相处之道,主张将发展伙伴关系作为中印战略伙伴关系的核心,积极推动中印关系沿着健康稳定轨道向前发展。不过,中印关系并未按照中国的良好期待发展,双边关系面临的复杂性和挑战性越来越明显。中国应统筹发展和安全,合理预期,预判预置,理性审慎看待中印经贸合作的利益与风险,努力稳定并加强中印供应链合作关系,积极主动加强本国产业链供应链韧性,有效化解印度产业转型可能给中国带来的冲击。

【责任编辑:吴劭杰】